人工智能的未来在于什么

2020-03-14 19:18 来源:未知 作者:石家庄生活网
人工智能的未来在于什么

  由于,人工智能(AI)担负工作与目前大多数计算机的运算工作有些不同。然而,AI隐含着分析预测、推理、直观的能力与功能。实时是最有创意的机器学习算法也受到现有机器硬件能力的束缚。因此,若要在AI方面取得长足进步,我们必须在硬件上进行改变,或是半导体材料上进行突破。演变从GPU开始,引入模拟设备(analog devices),然后演变成为具容错性量子计算机(fault tolerant quantum computers)。

现在从大规模分布式深度学习算法应用于图形处理器(GPU)开始将高速移动的数据,达到最终理解图像和声音。DDL算法对视频和音频数据进行训练,GPU越多表示学习速度越快。目前,IBM创下纪录:随着更多GPU加入能提升达到95%效率,就能识别750万个图像达到33.8%,使用256个GPU 于64个Minsky电源系统上。


自2009年以来,随着GPU模型训练从视频游戏图形加速器转向深度学习,使分布式深度学习每年以约2.5倍的速度发展。所以IBM曾于2017年IEEE国际电子设备会议(2017 IEEE International Electron Devices MeeTIng)针对应用材料发表Semiconductor Futurescapes: New Technologies, New SoluTIons,谈到需要开发哪些技术才能延续这种进步速度并超越GPU?

如何超越GPU

IBM研究公司认为,GPU的转变分为三个阶段进行:

1、首先将在短期内利用GPU和传统的CMOS构建新的加速器以继续进行;

2、其次将寻找利用低精密度和模拟设备(analog devices)来进一步降低功率和提高性能的方法;

3、然后进入量子计算时代,它可是一个机会,能提供全新的方法。

在CMOS上的加速器还有很多工作要做,因为机器学习模型可以容忍不精确的计算。正因为“学习”模型可以借助错误学习而发挥作用,然而,在银行交易是无法容忍有一些许的错误。预估,精准运算快速的趋势,到2022年每年以2.5倍在提高。所以,我们还有五年时间来突破模拟设备(analog devices),将数据移入和移出内存以降低深度学习网络的训练时间。因此,analog devices寻找可以结合内存和运算,对于类神经演算的进展将是非常重要的。

类神经演算如同模拟脑细胞。神经元(neurons) 结构相互连接以低功率讯号突破von-Neumann的来回瓶颈(von-Neumann’s back-and-forth bottleneck),使这些讯号直接在神经元之间传递,以实现更高效的计算。美国空军研究实验室正在测试IBM TrueNorth神经突触系统的64芯片数组,专为深度神经网络推理和挖掘信息而设计。该系统使用标准CMOS,但仅消耗10瓦的能量来驱动其6400万个神经元和160亿个突触。

但相变化内存(phase change memory)是下一代内存材料,可能是针对深度学习网络优化的首款仿真器件。

进入量子时代 (quantum)

据IBM公司的研究论文,在Nature Quantum InformaTIon中展示了机器学习中量子的优势证明(“DemonstraTIon of quantum advantage in machine learning”),展示了只有五个超导量子位处理器,量子运算能够稳定减少达100倍运算步骤,并且比非量子运算更能容忍干扰的信息。

IBM Q的商业系统现在有20个量子位,并且原型50个量子位设备正在运行。它的平均时间为90μs,也是以前系统的两倍。但是容错系统在今天的机器上显示出明显的量子优势。同时,试验新材料(如铜相通的替代品)是关键 - IBM及其合作伙伴在IEDM上推出的其他关键芯片改进,以推进所有运算平台,从von Neumann到类神经及量子。

解决处理器到储存器的连接和带宽瓶颈,将为AI带来新的储存器架构,最终可能导致逻辑和储存器制造过程技术之间的融合。IBM的TrueNorth推理芯片就是这种新架构的一个例子,其中每个神经元都可以存取自己的本地储存器,并且不需要脱机存取储存器。

借助训练和推理形式的AI运算,必须推向边缘装置上(edge devices),例如:手机、智能手表等。因此,这将兴起由计算设备组成的网络系统。大多数这样的边缘装置会受到功率和成本的限制,所以他们的计算需求可能只能透过高度优化的ASIC来满足。现在,传统无晶圆厂半导体公司是否有能力提供这类型的ASIC或是否由AI芯片新创公司例如云端服务提供商,由谁主导目前还为时过早。 

上一篇:这些手机依然没有放弃物理按键        下一篇:没有了

上一篇:这些手机依然没有放弃物理按键

下一篇:没有了

热门搜索